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Abstract. A study is made of the emission effects in quantum field systems contained in 
the regions of space with a non-stationary boundary. The back reaction of emission on 
the boundary is taken into account. The classical equations of motion of a system consisting 
of a free massless scalar field limited in space by a massive reflecting wall (mirror) are 
investigated in the two-dimensional case. The system is closed, i.e. external forces are 
absent. This system is quantised. The effect of the reaction of emission on the trajectory 
of a mirror is studied. The specific peculiarities of the stimulated emission processes in 
closed quantum systems with boundary are established and investigated. The results are 
related to hadron physics. 

1. Introduction 

Hawking’s discovery (Hawking 1975) has stimulated quantum field-theoretical studies 
in spaces different from Minkowski space. A number of interesting physical effects 
associated primarily with the global properties of the manifolds considered have been 
established (see DeWitt 1975, Frolov and Serebriany 1979). In particular, the relation- 
ship between the mechanisms generating the Hawking emission in black holes and 
the particle production by an accelerating mirror has been demonstrated by Fulling 
and Davies (1976, 1977). The role of an external gravitational field in this case is 
played by the trajectory z ( t )  of a mirror reflecting the quanta of a massless scalar 
field q ( t ,  z )  into the right-hand half-plane (figure 1). The analogue of Hawking’s 
effect is attained with a certain class of trajectories with a null asymptote T = t + z = 
constant (Fulling and Davies 1977); it manifests itself in the thermal (Planck) character 
of the spectrum of scalar particles arising at the final stage (at J ; )  as a result of the 
instability of an initial vacuum. 

These effects for quantum field systems contained in flat non-stationary regions 
are also of interest for hadron physics. There are some hopes to solve the problem 
of confinement of quark-gluon matter within the framework of quantum chromo- 
dynamics (Callan er a1 1979, Johnson 1979). Attempts have already been made to 
use the Hawking mechanism for extended hadron models (bags), to explain the thermo- 
dynamic behaviour of some hadron characteristics (Hosoya 1979). The effects concer- 
ned with vacuum instability may also serve as a basis for hydrodynamical models 
where the spectrum of final particles is defined by the character of the trajectory of 
the boundaries and expanding hadron matter (Gorenstein er a1 1977, 1978). 

There is, however, an important question that may not be disregarded without 
frustrating the attempts to use the effect that we consider in hadron physics. We mean 
taking into account the back reaction of the arising emission to a reflecting boundary. 
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Figure 1. A Penrose diagram of the portion of two-dimensional Minkowski space to the 
right of a reflecting boundary. The mirror's trajectory z o ( f )  with a null asymptote T =  
constant corresponds to the case when an external force is acting to accelerate the mirror 
(Fulling and Davies 1977). The light infinity of the past is denoted by J - ,  and the right 
and left light infinities of the future by J& and J:.  The broken line indicates the trajectory 
of a mirror for a closed system consisting of a mirror and a field rp which is reflected by 
the mirror to the right (see 6 2.5). 

This problem is non-trivial, because the results quoted above are obtained by assuming 
that the character of the boundary trajectory is preassigned. This, in fact, means that 
the physical system is not closed and that there are no conserved quantities such as 
energy in the theory. Conversely, if we consider the system of a field plus a mirror 
as a closed one, we should be led to explicit expressions for conserved quantities, and 
should be able automatically to take account of the back reaction of the field to the 
boundary trajectory. It is the aim of this paper to state and solve this problem in the 
exactly solvable two-dimensional case. A field exists only on one side of the mirror. 
This case is interesting for physical applications, as it corresponds to the bag model 
ideology where the field on the outside of the bag is absent. We emphasise that in 
this paper an external force (corresponding to the gravitational field of the black hole) 
acting to accelerate the mirror is not considered. 

In 0 2, we formulate the model and find the classical equations of motion for a 
closed system. We also establish the laws of conservation of energy, momentum and 
angular momentum and give their explicit expressions in light-cone variables. In Q 3, 
we study the Hamiltonian formulation of the model, Poisson brackets, and obtain 
classical solutions. In 0 4, we quantise a closed relativistic system and introduce in- 
and out-states. To construct these states we diagonalise the energy operator of the 
closed system in two different ways. These ways correspond to different sets of creation 
and annihilation operators a', b', both quantisation methods being valid for all times. 
In the following we argue that in the limit 7 -* fa the interaction between the mirror 
and the field tends to zero (e.g. the approximation of Q 5 gives for the mirror 
acceleration a - exp(-t*/c). Then the energy of the free field for t + -a is expressed 
in a diagonal form in terms of the operators a', and for t+ +a in terms of the 
operators b'. So the states induced by these operators are in- and out-states of the 
system. 
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Section 5 treats the S-matrix and particle production. For this reason we develop 
an approximate method by introducing the concept of a mirror trajectory for a closed 
quantum system taking into account the back reaction of emission. This approximation 
gives the connection between in- and out-operators. The nonlinearity of the problem 
is taken into account in this approximation as the dependence of Bogolubov transfor- 
mation coefficients on the initial state of the system. We obtain the effect of anomalous 
(quasi-spontaneous) stimulated emission, which is important for astrophysics and 
hadron physics. 

2. Formulation of the model and conservation laws 

To describe in a systematic manner a closed system consisting of a field and a ‘mirror 
wall’ limiting at the left the half-space where the field is contained, it is necessary to 
regard the boundary coordinate as a dynamic variable. We consider a two-dimensional 
case: x”  = (t, z). Let p(t, z)  be a real, scalar massless field, m the mass of a ‘wall’, and 
zo(t) its coordinate. (The role of mass in the bag model where there is another 
boundary is placed by the surface tension a (Hasenfratz and Kuti 1978).) The 
relativistic-invariant action for this system is 

1 aQ aQ dz (- 7 -) - m S = ir dt dt (1 - io(t)2)1/2. 2 ax ax, 

Variation of this action with respect to Q and zo leads to a Neumann equation at the 
boundary which has a derivative of the field. The mirror model is specified by a 
Dirichlet equation: q(t, zo(t)) =constant (De Witt 1975, Fulling and Davies 1976). 
To obtain the equations of motion for this system we require that the last equation 
should be satisfied as an addition21 boundary condition. By varying the action (1) 
over Q, zo under this condition and putting SS = 0, we obtain: 

OQ(t, z )  = 0 to the right of the boundary, (2) 

Equations (2)-(4) are a complete set of the equations of motion of a reflecting 

We now establish the conservation laws. The energy-momentum tensors for the 
boundary and a field under a Dirichlet condition. 

field and mirror are 

where gWu in 

(6) 
dxgdx; ( 2 )  Tg) = m 

the coordinates x” = (t, z )  has the form 

da- - S [x -xo(a)] d a  = (g”” dx; dx;)’” f d o  d a  
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By integrating the relation ~3,T:p =0, resulting from (2), ( 5 ) ,  over the two- 
dimensional (t, z )  volume occupied by the field between times to and to+dt and using 
equations (3), (4), we obtain the following relations: 

Here n,  = (io, -1) is the vector proportional to the normal for the boundary trajec- 
tory; E(f), P(f) and E(,,, P(,, are the energy and the momentum of the field and of the 
mirror, respectively. 

In a similar way we can show the conservation of the total angular momentum 
M&’ + MG),  

It is convenient to investigate the equations of motion and to quantise the system 
in terms of light-cone variables 

- x+=T=( I / JZ ) (~+Z) ,  x - = x  =(1/J2)(t-z), g+- = g-+ = 1, 

Equation ( 2 )  in these variables has the solution 

CP = f ( T )  + g ( X )  

and equations (3), (4) are much simplified, 

f(7) = -g[Xo(T)I, 

where X0(r) = ( 1  - i o ( t ) ) ( l  + io(f))-’, 0 < i o ( r )  < 03. The derivatives with respect 
to time and space variables are denoted by dots and primes. 

The integrals of motion B 
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The integration in (14)  is over the surface Z shown in figure 2.  Using the relations 
(12),  (13) ,  we can see immediately that the quantities (15)-(17) are conserved. 

X 

Figure 2. Cauchy surface for the invariants of motion. The broken lines indicate space-like 
surfaces t = constant (zo( t )  < z < CO); the full line corresponds to a light-like surface X.: 7 = T~ 
(-CO < x  <xo(7) ) ,  x = x*  + -CO (To < 7 <CO). 

3. Hamiltonian formalism and Poisson brackets 

The nonlinear set of equations (12) ,  (13) defines (to an accuracy of constants) the 
function of the field q, and the trajectory x o ( 7 )  by assigning the function f ( 7 ) :  

(18) sp =f(T) -fr7O(x)l, T ~ ( X )  is the function inverse of xo(7), 

where 

P = (m/JZ)(io(-oo))-”2, (20) 

Q(7) = - (m2/2P2)7+ Q o ,  Qo = constant. (2 1 )  

It is easy to see that in the classical case equation (13)  responsible for the back reaction 
of a field to a mirror involves no null asymptote: 7 0 ( x )  + constant, x +a. According 
to (13) ,  (15), this would correspond to an infinite energy of the system. 

For quantisation purposes we now formulate the classical equations in Hamiltonian 
form and find the Poisson brackets that we need. For this reason we change to new 
variables in which the Hamiltonian H is diagonal. We put 

where (a’(K))* = a - ( K )  because the field is real. We use (22)  and the equation of 
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motion to express H, P, M in terms of u ( K ) .  Then 

m2 
2P 

m 

H = l  1 dK K ( U + ( K ) U - ( K ) + U - ( K ) U + ( K ) ) + - ,  

X{U+(Kl)U-(K2) eXp [ i ( K 1 - K 2 ) T ] + U - ( K l ) U C ( K 2 )  eXp [-i(Ki-KZ)T]}. 
(25)  

p(K, 7 )  = JK(a-(K) e- ' " '+a+(K)  e'"'). 

(26) 

As independent real coordinates q ( ~ ,  T )  and momenta P(K, T )  we choose 

q(K, 7) = (i/2&)(u-(K) e - i K T - a + ( K )  e'"'), 

The Hamiltonian (23) in these variables has the form 

The Hamiltonian equations and the Poisson brackets for variables q ( ~ ,  T )  and 
P(K, T )  are of the usual form 

It is easy to see that the cyclic variable Q (21) is the canonical conjugate of P:  

Q ( T )  = aH/aP = { Q ( T ) ,  H}.  (29) 

We have the Poisson brackets for variables Q ( T ) ,  P 

Using the form of the function f(7) in the new variables, 

we can give the solution (19) for x ~ ( T )  in terms of P(K, T ) ,  g(K, T )  and see that 

Direct calculation using the relations (27), (28), (30) leads us to correct PoincarC 
relations for the Poisson brackets of (23)-(25): 

{M, H } =  -H, {M, PI = P, {H, P }  = 0. (33) 
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We conclude this section by indicating an_ alternative method also resulting in a 
diagonalisation of the total energy E = (1/(.\/2)(P’+ P - )  of the system. 

Just as we have expressed the solutions (18),  (19) of equations (12) ,  (13) by 
assigning the function f ( ~ ) ,  we can obtain solutions to these equations by expressing 
them in terms of the functions g(cu). Then 

rp = g(x) - g(x0(7)), (34) 
03 

( 3 5 )  
2 1 w  W 2 w  

- T ~ ( X )  = dx’ (I, dx”(g’(x’’))2) +$ I dx’ I dx”(g’(x”))2+S(x), 
X X ‘  

where 

h = ( m / ( J 2 ) ( i o (  + 0 0 ) ) ~ ’ ~  

S(x) = -m2x/2h2+So,  So =constant. 

(O<h <CO) 

By representing the function g(x) as 

(36)  

(37)  

under the condition that the field is real (b’(q))* = b-(q), and proceeding along the 
lines indicated above, we arrive at 

P -  = h, (40) 
m 2  

dx x(g’(x))2+- x +$(hS + Sh). 
2h 

m 

P’ is used here as the Hamiltonian of the system. 
By changing next to independent variables, expressed in terms of b(q), such as 

coordinates and momenta, we can easily obtain commutation relations such as (28),  
(30) ,  where the conjugate pair of variables Q, P correspond to S,  h, and establish 
that the relations (33)  are valid. 

4. Quantisation of the system 

The quantisation is done via the correspondence principle, the Poisson brackets being 
replaced by commutators: 

i(A, B} + [A, B]. 
This procedure results in the following commutation relations: 

[ a - ( K ) ,  a ’ ( K 2 ) ] =  ~ ( K I  - K 2 ) ,  [a+, a’] = [a- ,  a- ]  = 0, 
(42)  

[Q, PI = i, [Q, a‘] = [P, a’] = 0. 

In a similar way we obtain for the variables introduced through (36)-(38) 

[b-(qi)b’(qz)l= a(qi -421, [b+, 6’1 = [b-,  b-] = 0 (43)  

[S, h ]  = i, [S ,  b’] = [h, b*] = 0. 
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Relations (33) or direct calculations of (15)-(17) with (42)  taken into account lead 
us to a correct PoincarC algebra for quantum theory 

[M, HI = -iH, [M, PI = iP, [H, PI = 0. (44)  

a-(K)ldo) = 0 (45)  

We now determine the vacuum state of the system 

and regard the observables H, P, M, ~ ~ ( 7 )  as normally ordered. In particular, 

m2 
H = Jom dK K ~ + ( K ) ~ - ( K ) + - ,  

2P 

The invariant mass of the system, M 2 ,  is 
m 

M' = 2~ Jo dK K u + ( K ) u - ( K ) +  m2.  

(46) 

(47)  

The vacuum state has a non-zero momentum P = P+.  This is so because the system 
possesses a non-zero invariant mass even in the absence of excitations in the system, 
as follows from (47) .  This observation can be explained by the fact that a mirror of 
mass m is, by the very statement of the problem, an object with a fixed number of 
degrees of freedom. As a result, the quantisation yields two separate conjugate 
variables Q and P satisfying the quantum mechanical commutation relation. The 
variable P has the significance of a total momentum of the system, P', in light-cone 
variables, and Q is the 'coordinate' connected linearly with the coordinate characteris- 
ing the centre-of-mass system. The space of states of a quantum system may therefore 
be represented as a superposition of states 

14) = IdJa)ldp) (48)  
where Iq5a) are the vectors of Fock space constructed in a standard manner by the 
action of the operators u ' ( K )  on the vacuum, and the vectors l d J p )  correspond to the 
free motion of the system as a whole. 

It is easy to see that the sum of two terms in the Hamiltonian (46) corresponds 
to the sum of energy contributions from a free massless field (p and a mirror of mass 
m at t+-CO: 

CO 

Pa)(-m)=fiE(t)(-CO)=]o dK K U + ( K ) U - ( K ) ,  

PG) (-CO) = m 2 / 2 p .  

In other words, the Hamiltonian of the system was diagonalised by going over to the 
in-operators Ait , (~)  of the field (p(7, x). The corresponding field (pin is a free massless 
scalar field limited at the left by a mirror barrier moving with constant velocity 
( X O ( - ~ ) ) .  The first term in (46)  corresponds to the translation generator of the field 
cp at the light infinity of the past: 

H(o(J-> =Pa)(Aid, = u * ( K ) .  (50) 

Similarly, the operators b*(q), diagonalising the total energy of the system and 
introduced through (38), correspond to out-operators, so that 

H d J ' )  =P&(Ao,t), & " t W  = b*(q), (51) 
where P t )  corresponds to the first term in (39). 
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We conclude by mentioning that the states of the closed system (48) introduced 
by us are in-states. Final out-states are constructed in a similar way from the 
superposition of states such as 

140ut) = I 4 b ) l 4 h ) *  (52) 

5. S-matrix, particle production and the back reaction of emission 

To establish the connection between the operators Ai, and A,,, we make use of the 
relations (18), (34): 

(P(7, x )  =fa (7) - f a [ T O ( x ) l =  g b ( x )  - g b [ x O ( T ) ]  (53) 
where the functions fa are expressed in terms of the variables a * ( K )  through the use 
of (19), (22), and the g b  are expressed in terms of the variables b*(q)  according to 
(351, (38). 

We thus have 

The expressions for x l o ( ~ )  and i o ( 7 )  in terms of A $ ( K )  = a * ( K )  are obtained from 
(19), (22) and considered to be normally ordered. 

The investigation of a complete S-matrix induced by the relations (50) is a difficult 
enough problem, because the relationship between in and out-operators is essentially 
nonlinear. In the present paper we propose an approximate method of solving this 
question by introducing a mirror trajectory taking into account the reaction of emission. 

The mirror trajectory operator &(T)  in our model is dependent upon the field 
operators Ai,, and this indicates that there is interaction in the system at finite times. 
Suppose that a closed system is in some state 14). The average in the vector 14) of 
the operator i ( ~ )  is then an analogue of the classical trajectory: 

G(7) = (41x*(T)14). ( 5 5 )  

We now consider the limit when the mirror mass tends to infinity. Since M 2  + CO 

in this case, the motion of the system as a whole may be described classically, and 
the relevant operators Q and P may be considered to be commuting ones. Next, it 
is easy to see from (19) and (22) that 

so that we can disregard the dispersion for the trajectory .f4 (7)  within this limit. 



2542 Yu MSinyukov 

Without going into detailed estimations of the expansions of physical quantities in 
powers of l /m,  we shall proceed from intuitively clear considerations. We can then 
think that at sufficiently large m (as compared with the field energy), the interaction 
of a massive boundary with a field when a closed system is in a state 14) is approximately 
reduced to the presence of a classical trajectory f , ( r )  limiting the space occupied 
by a quantised field. As a matter of fact, x+(r) in the approximation under consideration 
is an effective trajectory, taking account of the reaction of a quantised field which is 
in an initial state I+), to a mirror which has an initial velocity i ( -co) .  

This approximation allows one to linearise the relations (54) connecting in and 
out-operators. Suppose that the field is an initial state 

1 "  
/ 4 i n ) = - J '  X n ( K 1  . . . K n )  fi U+(Ki)  dKil40, in) 

J,? o i = l  

where xn(. . . K ; .  . .) are the normalised wavefunctions of a system of n identical 
particles. Let 140ut) be some final state of a field: 

m 

We can then use (53) to obtain the following expressions for the S-matrix elements: 
m 

where 
r m  r m  

and the Bogolubov transformation coefficients 

with the index 4 corresponding to the state 14) = 14in). 

irrespective of the choice of the initial state 14). 

as its state 14) = /do, in), spontaneous emission of radiation at J +  is zero: 

Direct calculation can show that the transformation (57), (58) is a canonical one 

Using (19), (22), (57), (58),  we find that if the system (field) at J -  has a vacuum 

(40, inlfi?' 140, in> = (40, inIb~,(q)bi,(q)Im, in) = Ips./* dK = 0. (59) 

The vacuum of a field is thus stable, and 140, out) = 140, in) = 10) in the expression (56) 
for S-matrix elements. 

The non-trivial result produced by the model is the presence of an anomalous 
essentially quantum contribution to stimulated emission if the initial state of the system 
is different from the vacuum. Suppose 

jom 
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where x ~ ~ ( K ~ )  are the normalised wavepackets with an average value of the energy PO. 
Then Z+(T) is (in first order of Nopo/m) 

0 

x ,Y :o (K dXpo(K z){eXP[i(K z - K I)’] [ 1 - i(K 2 - K 1) (7 + A 11 
- exp[-i(K2 - K 1)7]} (61) 

where No = Nj-  is the initial number of particles at J-. The third term in (61) 
corresponds to the back reaction of the field to the mirror. 

The density of the number of particles with energy q, emitted to J-, is 

Jo 

All the terms in (63) are positive. Thus NJ+ > NJ-, and unless the initial state is 
a vacuum, the mirror will always produce particles. The third term in (63),  proportional 
to the initial number of particles, is characteristic for stimulated emission and has, in 
fact, a classical nature (Fulling and Davies 1977). The status of the second term on 
the right-hand side of (63) is not ordinary. It vanishes at No = 0, as does the third 
term, because P+(q, K )  is dependent upon No (according to (61) ,  the mirror in this 
case travels with a constant velocity i 0 ( -m) ) .  This implies that the second term is 
also responsible for stimulated emission. Its structure, however, exactly corresponds 
to the quantities defining the spontaneous emission of particles by a mirror which 
moves along a given trajectory x ( T )  = Z+(T)  and makes a major contribution to particle 
flux at J’ (Fulling and Davies 1977). This anomalous, quasi-spontaneous character 
of stimulated emission is one of the most interesting peculiarities of the behaviour of 
closed quantum systems with a boundary. 

The total reaction of initial and stimulated emission at the boundary is described 
by the third term in the expression (61) for an effective trajectory. As mentioned 
above, an analogue of the Hawking effect in the ‘mirror model’ is attained with a 
certain class of trajectories having a null asymptote. Analysis of (61), (19), however, 
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shows that in a closed quantum system the trajectory f 4 ( r ) ,  taking into account the 
reaction of emission, occurs for all r:  

Consequently, the null asymptote (analogue of the event horizon) does not occur 
here. The question that arises immediately, of whether taking account of the back 
reaction of emission in the analogue to the Hawking effect is analogous to taking 
account of the emission on the metric in the.Hawking effect, requires separate 
treatment. 

We now find the total energy 8 of an anomalous quantum stimulated emission. 
The Bogolubov transformation coefficients are supposed to be distributions defined 
on finite functions F(q, ~ ) 6 ) ( ~ ) 6 ) ( q )  (including F(q,  K )  =constant). It is not difficult 
to show that for the trajectories of the type (64) the Bogolubov transformation 
coefficients &(q, K )  are regular in q, K anywhere, with the exception of the point 
4 = K = 0. Direct calculation of 8, using the standard rules of manipulation with 
distributions and taking into consideration the unambiguity of the function r4(x) = 
xG1 ( T )  traced from (64), yields 

For trajectories of the class (64) the result (65) is formally the same as the expression 
for the energy of spontaneous emission at a given trajectory of a mirror, which is 
obtained by the covariant point splitting technique in Fulling and Davies (1976). 

Suppose that the initial state of the system is described by the vector 19). Now, 
if as x p o ( ~ )  we choose wavepackets of the Gaussian form 

X p o ( " 1 -  exP[-(K -P0)2/D21, 

the trajectory (61) has the form 

where lFl(a, b, z )  is the Kummer function. Using (65), we obtain finally 

where 

is the initial energy of the field. (E:,,,) is the initial energy of the mirror.) 
The result (67) lends itself to a clear physical interpretation. It implies that a 

considerable contribution comes from the quantum stimulated emission only at vo << 1, 
i.e. when the initial velocity of a mirror is directed towards the field and is high: 
io + 1. This is accompanied by the deceleration of the mirror by the field. The mirror's 
energy lost in the process is spent in exciting the field oscillators, resulting in an 
emission of new quanta. According to (67), the highest possible emission under this 
process is 8 -E:,). 
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6. Conclusions 

2545 

We have considered the specific peculiarities of the radiation processes in closed 
quantum systems with boundary. The discussion refers to the exactly solvable two- 
dimensional scalar field case. We think however that the above peculiarities of the 
radiation processes in the systems of interest are of a general nature. The physical 
reason for this (quasi-spontaneous) emission is an accelerated motion of the induced 
surface bound charges (currents) guaranteeing the boundary condition (type cp = 0). 
In closed systems the acceleration is due to the pressure of the field on the boundary 
surface. 

Closed systems with a boundary are apparently realised in QCD: the bags (Callan 
et al 1979, Johnson 1979). The boundary conditions in the bags correspond to a 
screening by induced colour magnetic poles and currents; these sources are present 
in QCD. The results of this paper indicate another mechanism of quark and gluon 
production in non-stationary bags. 
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